

Atomic Mass Unit

- Developed as a convenient method to show the mass of an element
 - u or μ or amu
 - Defined as 1/12 of the mass of a carbon-12 atom
 - Based on carbon because
 - Carbon is a very common element
 - It results in a whole number for the atomic mass of most elements
 - It gave hydrogen (the lightest element) a mass of 1

 Potass 	Example	
Isotope	Percent Abundance	Atomic Mass (u)
K-39	93.2581	38.963707
K-40	0.0117	39.963998
K-41	6.7302	40.961826
	(38.963707)(0.9325)(39.963998)(0.0001)+ (40.961826)(0.0673)39.098301 u	81) 17) 02)

	Example 1	
• Magne	esium (Mg)	
Isotope	Percentage Abundance	Atomic Mass
	(%)	(u)
Mg-24	78.70	23.98504
Mg-25	10.13	24.98584
Mg-26	?	25.98259
he avera	age atomic mass of Mg	is 24.30955 u ance of Mg-2

(23.98504)(.7870) + (24.98584)(.1013) + (25.98259)(x) = 24.30955Solve for x 18.87623 + 2.53107 + 25.98259x = 24.3095521.4073 + 25.98259x = 24.3095525.98259x = 2.90225x = 0.1117The percentage abundance of Mg-26 is 11.17%

Isotope	Percentage Abundance	Atomic Mass
	(%)	(u)
¹⁰ B	?	10.012937
¹¹ B	?	11.009306

$$(10.012937)(x) + (11.009306)(y) = 10.811028$$

x + y = 1

We need to solve a system of equations with 2 unknowns.

We need to rearrange the second equation and substitute it into the first equation.

y = 1 - x(10.012937)(x) + (11.009306)(1 - x) = 10.811028

Now, solve for *x*

10.012937x + 11.009306 - 11.009306x = 10.811028-0.996369x = -0.198278x = 0.199

Now that we know *x*, we can solve for *y* (10.012937)(0.199) + (11.009306)(y) = 10.811028 1.992574 + 11.009306 y = 10.811028 11.009306 y = 8.818454 y = 0.801Therefore, the percentage abundances of each isotope are: ${}^{10}B = 19.9\%$ ${}^{11}B = 80.1\%$